Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.924
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597299

RESUMO

Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.


Assuntos
Acetatos , Antioxidantes , Halomonas , Fármacos Neuroprotetores , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácido Okadáico/metabolismo , Ácido Okadáico/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Glutationa Transferase/metabolismo
2.
Mar Pollut Bull ; 201: 116250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479322

RESUMO

Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.


Assuntos
Toxinas Marinhas , Venenos de Moluscos , Oxocinas , Regiões Antárticas , Ácido Okadáico/análise , Oceano Índico
3.
J Chromatogr A ; 1720: 464795, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490144

RESUMO

An accurate and efficient method was developed for the determination of azaspiracid shellfish toxins (azaspiracids-1, -2, and -3), neurotoxic shellfish toxins (brevetoxins-2 and -3), diarrhetic shellfish toxins (okadaic acid and dinophysistoxins-1 and -2), and the amnesic shellfish toxin (domoic acid) in mussels (Mytilus galloprovincialis). Lipophilic marine biotoxins (azaspiracids, brevetoxins, and okadaic acid group) were extracted with 0.5 % acetic acid in methanol under heating at 60°C to improve the extraction efficiency of okadaic acid group toxins and then cleaned up with a C18 solid-phase extraction cartridge. Domoic acid was extracted with 50 % aqueous methanol and then cleaned up with a graphitized carbon solid-phase extraction cartridge. Lipophilic marine biotoxins and domoic acid were quantified by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The developed method had insignificant matrix effects for the nine analytes and good recoveries in the range of 79.0 % to 97.6 % at three spiking levels for all analytes except brevetoxin-2 (43.8-49.8 %). The developed method was further validated by analyzing mussel tissue certified reference materials, and good agreement was observed between certified and determined values.


Assuntos
Bivalves , Ácido Caínico/análogos & derivados , Oxocinas , 60437 , Compostos de Espiro , Espectrometria de Massas em Tandem , Animais , Ácido Okadáico/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa , Metanol , Cromatografia Líquida/métodos , Frutos do Mar/análise , Toxinas Marinhas/análise , Bivalves/química , Extração em Fase Sólida
4.
Arch Toxicol ; 98(5): 1311-1322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38416141

RESUMO

Marine biotoxins are a heterogenous group of natural toxins, which are able to trigger different types of toxicological responses in animals and humans. Health effects arising from exposure to marine biotoxins are ranging, for example, from gastrointestinal symptoms to neurological effects, depending on the individual toxin(s) ingested. Recent research has shown that the marine biotoxin okadaic acid (OA) can strongly diminish the expression of drug-metabolizing cytochrome P450 (CYP) enzymes in human liver cells by a mechanism involving proinflammatory signaling. By doing so, OA may interfere with the metabolic barrier function of liver and intestine, and thus alter the toxico- or pharmacokinetic properties of other compounds. Such effects of marine biotoxins on drug and xenobiotic metabolism have, however, not been much in the focus of research yet. In this review, we present the current knowledge on the effects of marine biotoxins on CYP enzymes in mammalian cells. In addition, the role of CYP-regulating nuclear receptors as well as inflammatory signaling in the regulation of CYPs by marine biotoxins is discussed. Strong evidence is available for effects of OA on CYP enzymes, along with information about possible molecular mechanisms. For other marine biotoxins, knowledge on effects on drug metabolism, however, is scarce.


Assuntos
Sistema Enzimático do Citocromo P-450 , Toxinas Marinhas , Animais , Humanos , Toxinas Marinhas/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Okadáico , Fígado , Receptores Citoplasmáticos e Nucleares , Mamíferos/metabolismo
5.
Angew Chem Int Ed Engl ; 63(18): e202402007, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38407551

RESUMO

Pathological hyperphosphorylation and aggregation of microtubule-associated Tau protein contribute to Alzheimer's Disease (AD) and other related tauopathies. Currently, no cure exists for Alzheimer's Disease. Aptamers offer significant potential as next-generation therapeutics in biotechnology and the treatment of neurological disorders. Traditional aptamer selection methods for Tau protein focus on binding affinity rather than interference with pathological Tau. In this study, we developed a new selection strategy to enrich DNA aptamers that bind to surviving monomeric Tau protein under conditions that would typically promote Tau aggregation. Employing this approach, we identified a set of aptamer candidates. Notably, BW1c demonstrates a high binding affinity (Kd=6.6 nM) to Tau protein and effectively inhibits arachidonic acid (AA)-induced Tau protein oligomerization and aggregation. Additionally, it inhibits GSK3ß-mediated Tau hyperphosphorylation in cell-free systems and okadaic acid-mediated Tau hyperphosphorylation in cellular milieu. Lastly, retro-orbital injection of BW1c tau aptamer shows the ability to cross the blood brain barrier and gain access to neuronal cell body. Through further refinement and development, these Tau aptamers may pave the way for a first-in-class neurotherapeutic to mitigate tauopathy-associated neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Ácido Okadáico/metabolismo , Ácido Okadáico/farmacologia , Ácido Okadáico/uso terapêutico , Fosforilação
6.
Anal Methods ; 16(10): 1538-1545, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38404181

RESUMO

Okadaic acid (OA) is one of the main virulence factors of diarrheal shellfish toxins (DSP). It is of great significance to detect OA with an accurate, specific and cost-effective technique in the fields of seafood safety and water quality control. In this work, an electrochemical aptasensor with reverse amplification was developed for the sensitive detection of OA. A two-dimensional graphite-phase nanomaterial (carbon nitride) modified with an anti-OA aptamer and thionine (Th) was immobilized onto the surface of the electrochemical electrode as the sensitive element to capture target OA molecules. ssDNA-modified carbon nitride was used as the reverse amplification element by hybridizing with non-OA linked aptamers. The preparation of the electrochemical aptasensor was well characterized by Scanning Electron Microscopy (SEM), zeta potential detection, UV-Vis absorption, Brunner-Emmet-Teller (BET) measurements, and electrochemical measurements. The quantitative assessment of OA was achieved by differential pulse voltammetry (DPV). Experimental results indicated that this aptasensor showed a concentration-dependent response to OA with a good detection performance including in terms of selectivity, repeatability, reproducibility, and stability. It exhibited 100-fold selectivity between OA and other toxins including dinophysistoxins (DTX), pectenotoxins (PTX), and yessotoxins (YTX). In addition, it showed a much wider quantification range, which is 10-13 M-10-10 M (0.080-80.50 pg mL-1). The detection limit was as low as 10-13 M (0.080 pg mL-1). The aptasensor also successfully achieved significant practicality on real shellfish samples contaminated by OA. All these results demonstrated that the reverse amplification strategy for marine toxin detection may provide a label-free and rapid detection approach for portable applications in the fields of environmental monitoring and food security.


Assuntos
Aptâmeros de Nucleotídeos , Nitrilas , Ácido Okadáico , Reprodutibilidade dos Testes , Aptâmeros de Nucleotídeos/química , Frutos do Mar , Alimentos Marinhos/análise
7.
Environ Monit Assess ; 196(3): 259, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349477

RESUMO

This work focused on assessing of the risk associated with the consumption of bivalve mollusks, potentially contaminated with phycotoxins. The studied phycotoxins are saxitoxin (STX), okadaic acid (OA), dinophysistoxins (DTXs), yessotoxins (YTXs), pectenotoxins (PTX), azaspiracids (AZAs), and domoic acid (DA). These toxins were investigated in three species of bivalve mollusks (Anadara senilis, Crassostrea gasar, and Perna perna), originating from the Ebrié lagoon. Chemical analyses were carried out by LC-MS/MS, HPLC-FLD, and HPLC-UV. The level of OA and DTXs, STX, and DA was 10.92 µg OA eq./kg, 9.6 µg STX eq./kg, and 0.17 mg DA eq./kg, respectively. The level of PTXs and AZAs was 3.3 µg PTX-2 eq./kg and 13.86 µg AZA-1 eq./kg; that of YTXs was 0.01 mg YTX eq./kg. The daily exposure dose (DED) was 0.019 µg OA eq./kg bw for OA and DTXs; 0.285 µg DA eq./kg bw for DA; 0.006 µg PTX-2 eq./kg bw for PTXs; 0.016 µg STX eq./kg bw for STX; 0.01 µg YTX eq./kg bw for YTXs; and 0.024 µg AZA-1 eq./kg bw for AZAs for the oyster Crassostrea gasar. These estimated values are lower than the acute reference dose (ARfD) of each phycotoxin recommended by the European Food Safety Agency (EFSA). The risk of harmful effects is acceptable. The absence of risk is valid only for the study period (11 months) and concerns coastal populations living near the sampling points.


Assuntos
Bivalves , Ecossistema , Furanos , Macrolídeos , Venenos de Moluscos , Oxocinas , 60437 , Animais , Côte d'Ivoire , Cromatografia Líquida , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Ácido Okadáico
8.
Mar Pollut Bull ; 199: 116027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217914

RESUMO

Harmful algal blooms (HABs) and their associated phycotoxins are increasing globally, posing great threats to local coastal ecosystems and human health. Nutrients have been carried by the freshwater Yangtze River and have entered the estuary, which was reported to be a biodiversity-rich but HAB-frequent region. Here, in situ solid phase adsorption toxin tracking (SPATT) was used to monitor lipophilic shellfish toxins (LSTs) in seawaters, and extended local similarity analysis (eLSA) was conducted to trace the temporal and special regions of those LSTs in a one-year trail in a mussel culture ranch in the Yangtze River Estuary. Nine analogs of LSTs, including okadaic acid (OA), dinophysistoxin-1 (DTX1), yessotoxin (YTX), homoyessotoxin (homoYTX), 45-OH-homoYTX, pectenotoxin-2 (PTX2), 7-epi-PTX2 seco acid (7-epi-PTX2sa), gymnodimine (GYM) and azaspiracids-3 (AZA3), were detected in seawater (SPATT) or rope farmed mussels. The concentrations of OA + DTX1 and homoYTX in mussels were positively correlated with those in SPATT samplers (Pearson test, p < 0.05), indicating that SPATT (with resin HP20) would be a good monitoring tool and potential indicator for OA + DTX1 and homoYTX in mussel Mytilus coruscus. The eLSA results indicated that late summer and early autumn were the most phycotoxin-contaminated seasons in the Yangtze River Estuary. OA + DTX1, homoYTX, PTX2 and GYM were most likely driven by the local growing HAB species in spring and summer, while Yangtze River diluted water may impact the accumulation of HAB species, causing potential phycotoxin contamination in the Yangtze River Estuary in autumn and winter. Together, the results showed that the mussel harvesting season, late summer and early autumn, would be the season with the greatest phycotoxin risk and would be the most contaminated by local growing toxic algae. Routine monitoring sites should be set up close to the local seawaters.


Assuntos
Compostos Heterocíclicos com 3 Anéis , Hidrocarbonetos Cíclicos , Iminas , Toxinas Marinhas , Mytilus , Ácido Okadáico/análogos & derivados , Animais , Humanos , Toxinas Marinhas/análise , Estuários , Adsorção , Rios , Ecossistema , Frutos do Mar/análise
9.
Toxicon ; 238: 107592, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163460

RESUMO

The protein phosphatase inhibitor microcystin-LR (MC-LR), a hepatocyte-selective cyanotoxin, induces phenotypic changes in HEK293 OATP1B3-expressing (HEK293-OATP1B3) cells, which include cytoskeletal reorganization (HEK293-OATP1B3-AD) and anoikis resistance (HEK293-OATP1B3-FL) transformed cells, respectively. These cells acquire resistance to MC-LR and partial epithelial-mesenchymal transition (EMT) characteristics. In cancer cells, EMT is generally involved in multi-drug resistance. Here, we focused on the multi-drug resistance of HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. The MTT assay and immunoblotting were conducted to examine the responses of HEK293-OATP1B3, HEK293-OATP1B3-AD, and HEK293-OATP1B3-FL cells to multiple toxins and drugs that function as substrates for OATP1B3, including MC-LR, nodularin (Nod), okadaic acid (OA), and cisplatin (CDDP). HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells were more resistant to MC-LR, Nod, and OA than HEK293-OATP1B3 cells. Conversely, the three cell types were equivalently sensitive to CDDP. By using protein phosphatase assay, the reduction of the inhibitory effect of MC-LR and Nod on phosphatase activity might be one reason for the resistance to MC-LR and Nod in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. Furthermore, the parental HEK293-OATP1B3 cells showed enhanced p53 phosphorylation and stabilization after MC-LR exposure, while p53 phosphorylation was attenuated in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. Moreover, in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells, AKT phosphorylation was higher than that of the parental HEK293-OATP1B3 cell line. These results suggest that the multi-toxin resistance observed in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells is associated with AKT activation and p53 inactivation.


Assuntos
Toxinas Marinhas , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteínas Proto-Oncogênicas c-akt , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/farmacologia , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células HEK293 , Microcistinas/metabolismo , Ácido Okadáico/toxicidade , Transição Epitelial-Mesenquimal , Fosfoproteínas Fosfatases
10.
Chem Biodivers ; 21(2): e202300926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38230763

RESUMO

Okadaic Acid, a type of diarrhetic shellfish poison, is widely distributed and harmful, causing symptoms such as diarrhea, vomiting, and more in humans. Recent studies have demonstrated that OA can lead to various toxicities such as cytotoxicity, neurotoxicity, embryotoxicity, and hepatotoxicity. In order to investigate the immunotoxicity of OA on intestinal cells, a transcriptome analysis was conducted to compare the differences in the Caco-2 cell transcriptional group before and after administration. The CCK-8 experiment demonstrated that OA had a detrimental effect on the activity of Caco-2 cells, with an IC50 value of 33.98 nM. Transcriptome data revealed changes in immune-related genes between the experimental and control groups, including inflammatory factors, heat shock proteins, and zinc finger proteins. The analysis of the results suggests that OA can induce the production of inflammatory factors and apoptosis in cells, and may also affect cell ferroptosis. These findings indicate that OA has a significant impact on intestinal immunity, providing valuable insights for the study of immune toxicity associated with OA.


Assuntos
Apoptose , Intestinos , Humanos , Ácido Okadáico/toxicidade , Células CACO-2 , Perfilação da Expressão Gênica
11.
Nucleic Acids Res ; 52(2): 801-815, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000390

RESUMO

Although ubiquitylation had traditionally been considered limited to proteins, the discovery of non-proteinaceous substrates (e.g. lipopolysaccharides and adenosine diphosphate ribose (ADPr)) challenged this perspective. Our recent study showed that DTX2 E3 ligase efficiently ubiquitylates ADPr. Here, we show that the ADPr ubiquitylation activity is also present in another DELTEX family member, DTX3L, analysed both as an isolated catalytic fragment and the full-length PARP9:DTX3L complex, suggesting that it is a general feature of the DELTEX family. Since structural predictions show that DTX3L possesses single-stranded nucleic acids binding ability and given the fact that nucleic acids have recently emerged as substrates for ADP-ribosylation, we asked whether DELTEX E3s might catalyse ubiquitylation of an ADPr moiety linked to nucleic acids. Indeed, we show that DTX3L and DTX2 are capable of ubiquitylating ADP-ribosylated DNA and RNA synthesized by PARPs, including PARP14. Furthermore, we demonstrate that the Ub-ADPr-nucleic acids conjugate can be reversed by two groups of hydrolases, which remove either the whole adduct (e.g. SARS-CoV-2 Mac1 or PARP14 macrodomain 1) or just the Ub (e.g. SARS-CoV-2 PLpro). Overall, this study reveals ADPr ubiquitylation as a general function of the DELTEX family E3s and presents the evidence of reversible ubiquitylation of ADP-ribosylated nucleic acids.


Assuntos
ADP-Ribosilação , Ácidos Nucleicos , Ubiquitina-Proteína Ligases , Adenosina Difosfato Ribose/metabolismo , Ácidos Nucleicos/metabolismo , Ácido Okadáico/análogos & derivados , Proteínas/genética , Ubiquitina-Proteína Ligases/metabolismo , Humanos
12.
J Hazard Mater ; 465: 133087, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38035524

RESUMO

It is still limited that how the microalgal toxin okadaic acid (OA) affects the intestinal microbiota in marine fishes. In the present study, adult marine medaka Oryzias melastigma was exposed to the environmentally relevant concentration of OA (5 µg/L) for 10 days, and then recovered in fresh seawater for 10-days depuration. Analysis of taxonomic composition and diversity of the intestinal microbiota, as well as function prediction analysis and histology observation were carried out in this study. Functional prediction analysis indicated that OA potentially affected the development of colorectal cancer, protein and carbohydrate digestion and absorption functions, and development of neurodegenerative diseases like Parkinson's disease, which may be associated with changes in Proteobacteria and Firmicutes in marine medaka. Significant increases of C-reactive protein (CRP) and inducible nitric oxide synthase (iNOS) levels, as well as the changes of histology of intestinal tissue demonstrated that an intestinal inflammation was induced by OA exposure in marine medaka. This study showed that the environmental concentrations of OA could harm to the intestinal microbiota thus threatening the health of marine medaka, which hints that the chemical ecology of microalgal toxins should be paid attention to in future studies.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Ácido Okadáico , Ecologia
13.
Environ Sci Pollut Res Int ; 31(4): 6243-6257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147248

RESUMO

The okadaic acid (OA)-group toxins, including OA, dinophysistoxin-1 (DTX1), dinophysistoxin-2 (DTX2), and dinophysistoxin-3 (DTX3), cause diarrheic shellfish poisoning in humans. To manage OA-group toxins more strictly, Korean regulations were recently revised to consider OA, DTX1, DTX2, and DTX3 combined. Thus, our study characterized the occurrence of OA, DTX1, DTX2, and DTX3 in seafood distributed across South Korea, and a risk assessment of seafood consumption was conducted. Two hundred and seventeen samples from 16 bivalve and 7 non-bivalve species collected from three representative coastal areas in 2021 were analyzed via liquid chromatography-tandem mass spectrometry. OA, DTX1, and DTX3 were detected in 2.3%, 4.1%, and 9.2% of the examined samples, with positive mean levels of 11.3, 16.4, and 40.9 µg/kg, respectively. DTX2 was not detected in any of the samples. At least one OA-group toxin was detected in the bivalve samples, including blood clams, pan shells, hard clams, mussels, and scallops, whereas none were detected in non-bivalves. The estimated acute exposure to OA-group toxins through the intake of seafood in the Korean population and consumer groups was low, ranging from 24.7 to 74.5% of the recommended acute reference dose (ARfD) of 0.33 µg OA equivalents/kg body weight. However, for the scallop consumers aged 7-12 years, acute exposure to OA-group toxins exceeded the ARfD, indicating a possible health risk. These results suggest that including DTX3 in the new regulatory limits is appropriate to protect Korean seafood consumers from exposure to OA-group toxins.


Assuntos
Bivalves , Toxinas Marinhas , Animais , Humanos , Ácido Okadáico , Bivalves/química , Alimentos Marinhos/análise , Medição de Risco , Piranos
14.
Harmful Algae ; 129: 102528, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951613

RESUMO

A three-year field study at a mussel (Mytilus edulis) aquaculture site in Ship Harbour, Nova Scotia, Canada was carried out between 2004 and 2006 to detect toxic phytoplankton species and dissolved lipophilic phycotoxins and domoic acid. A combination of plankton monitoring and solid phase adsorption toxin tracking (SPATT) techniques were used. Net tow and pipe phytoplankton samples were taken weekly to determine the abundance of potentially toxic species and SPATT samplers were deployed weekly for phycotoxin analysis. Mussels were also collected for toxin analysis in 2005. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyse the samples for spirolides (SPXs), pectenotoxins (PTXs), okadaic acid group toxins (OA, DTXs) and domoic acid (DA). Phycotoxins were detected with SPATT samplers beginning from the time of deployment until after the producing organisms were no longer observed in pipe samples. Seasonal changes in toxin composition occurred over the sampling period and were related to changes in cell concentrations of Alexandrium Halim, Dinophysis Ehrenberg and Pseudo-nitzschia (Hasle) Hasle. Spirolides peaked in late spring and early summer, followed by DA in mid-July. Okadaic acid, DTX1 and PTXs occurred throughout the field season but peaked in late summer. Concentrations of some phycotoxins detected in SPATT samplers deployed within the area where mussels were suspended on lines were lower than in those deployed outside the mussel farm. The SPATT samplers provided a useful tool to detect the presence of phycotoxins and to establish trends in their appearance in the Ship Harbour estuary.


Assuntos
Bivalves , Dinoflagelados , Animais , Fitoplâncton/metabolismo , Ácido Okadáico/análise , Estações do Ano , Toxinas Marinhas/análise , Cromatografia Líquida/métodos , Nova Escócia , Espectrometria de Massas em Tandem/métodos , Bivalves/química , Dinoflagelados/química , Aquicultura
15.
Toxins (Basel) ; 15(11)2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37999494

RESUMO

For the purpose of assessing human health exposure, it is necessary to characterize the toxins present in a given area and their potential impact on commercial species. The goal of this research study was: (1) to screen the prevalence and concentrations of lipophilic toxins in nine groups of marine invertebrates in the northwest Iberian Peninsula; (2) to evaluate the validity of wild mussels (Mytilus galloprovincialis) as sentinel organisms for the toxicity in non-bivalve invertebrates from the same area. The screening of multiple lipophilic toxins in 1150 samples has allowed reporting for the first time the presence of 13-desmethyl spirolide C, pinnatoxin G, okadaic acid, and dinophysistoxins 2 in a variety of non-traditional vectors. In general, these two emerging toxins showed the highest prevalence (12.5-75%) in most of the groups studied. Maximum levels for 13-desmethyl spirolide C and pinnatoxin G were found in the bivalves Magallana gigas (21 µg kg-1) and Tellina donacina (63 µg kg-1), respectively. However, mean concentrations for the bivalve group were shallow (2-6 µg kg-1). Okadaic acid and dinophysistoxin 2 with lower prevalence (1.6-44.4%) showed, on the contrary, very high concentration values in specific species of crustaceans and polychaetes (334 and 235 µg kg--1, respectively), to which special attention should be paid. Statistical data analyses showed that mussels could be considered good biological indicators for the toxicities of certain groups in a particular area, with correlations between 0.710 (for echinoderms) and 0.838 (for crustaceans). Polychaetes could be an exception, but further extensive surveys would be needed to draw definitive conclusions.


Assuntos
Bivalves , Mytilus , Intoxicação por Frutos do Mar , Animais , Humanos , Ácido Okadáico/análise , Toxinas Marinhas/toxicidade , Toxinas Marinhas/análise , Frutos do Mar/análise , Intoxicação por Frutos do Mar/prevenção & controle , Cromatografia Líquida , Espectrometria de Massas em Tandem
16.
Toxins (Basel) ; 15(11)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37999505

RESUMO

Algal toxins pose a serious threat to human and coastal ecosystem health, even if their potential impacts are poorly documented in New Caledonia (NC). In this survey, bivalves and seawater (concentrated through passive samplers) from bays surrounding Noumea, NC, collected during the warm and cold seasons were analyzed for algal toxins using a multi-toxin screening approach. Several groups of marine microalgal toxins were detected for the first time in NC. Okadaic acid (OA), azaspiracid-2 (AZA2), pectenotoxin-2 (PTX2), pinnatoxin-G (PnTX-G), and homo-yessotoxin (homo-YTX) were detected in seawater at higher levels during the summer. A more diversified toxin profile was found in shellfish with brevetoxin-3 (BTX3), gymnodimine-A (GYM-A), and 13-desmethyl spirolide-C (SPX1), being confirmed in addition to the five toxin groups also found in seawater. Diarrhetic and neurotoxic toxins did not exceed regulatory limits, but PnTX-G was present at up to the limit of the threshold recommended by the French Food Safety Authority (ANSES, 23 µg kg-1). In the present study, internationally regulated toxins of the AZA-, BTX-, and OA-groups by the Codex Alimentarius were detected in addition to five emerging toxin groups, indicating that algal toxins pose a potential risk for the consumers in NC or shellfish export.


Assuntos
Ecossistema , Frutos do Mar , Humanos , Estações do Ano , Nova Caledônia , Frutos do Mar/análise , Ácido Okadáico
17.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895137

RESUMO

Uncaria rhynchophylla (Gouteng in Chinese, GT) is the main medicine in many traditional recipes in China. It is commonly used to alleviate central nervous system (CNS) disorders, although its mechanism in Alzheimer's disease is still unknown. This study was designed to predict and validate the underlying mechanism in AD treatment, thus illustrating the biological mechanisms of GT in treating AD. In this study, a PPI network was constructed, KEGG analysis and GO analysis were performed, and an "active ingredient-target-pathway" network for the treatment of Alzheimer's disease was constructed. The active ingredients of GT were screened out, and the key targets were performed by molecular docking. UHPLC-Q-Exactive Orbitrap MS was used to screen the main active ingredients and was compared with the network pharmacology results, which verified that GT did contain the above ingredients. A total of targets were found to be significantly bound up with tau, Aß, or Aß and tau through the network pharmacology study. Three SH-SY5Y cell models induced by okadaic acid (OA), Na2S2O4, and H2O2 were established for in vitro validation. We first found that GT can reverse the increase in the hyperphosphorylation of tau induced by OA to some extent, protecting against ROS damage. Moreover, the results also indicated that GT has significant neuroprotective effects. This study provides a basis for studying the potential mechanisms of GT in the treatment of AD.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Ácido Okadáico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
18.
Toxins (Basel) ; 15(10)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37888618

RESUMO

Okadaic acid (OA) and its analogues cause diarrhetic shellfish poisoning (DSP) in humans, and risk assessments of these toxins require toxicity equivalency factors (TEFs), which represent the relative toxicities of analogues. However, no human death by DSP toxin has been reported, and its current TEF value is based on acute lethality. To properly reflect the symptoms of DSP, such as diarrhea without death, the chronic toxicity of DSP toxins at sublethal doses should be considered. In this study, we obtained acute oral LD50 values for OA and dinophysistoxin-1 (DTX-1) (1069 and 897 µg/kg, respectively) to set sublethal doses. Mice were treated with sublethal doses of OA and DTX-1 for 7 days. The mice lost body weight, and the disease activity index and intestinal crypt depths increased. Furthermore, these changes were more severe in OA-treated mice than in the DTX-1-treated mice. Strikingly, ascites was observed, and its severity was greater in mice treated with OA. Our findings suggest that OA is at least as toxic as DTX-1 after repeated oral administration at a low dose. This is the first study to compare repeated oral dosing of DSP toxins. Further sub-chronic and chronic studies are warranted to determine appropriate TEF values for DSP toxins.


Assuntos
Intoxicação por Frutos do Mar , Humanos , Animais , Camundongos , Ácido Okadáico/toxicidade , Dose Letal Mediana , Diarreia , Piranos/toxicidade
19.
J Chromatogr A ; 1708: 464334, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660560

RESUMO

A novel three-dimensional covalent organic framework (3D-COF) with content-tunable and active hydroxyl groups (OH) on the pore walls was developed and adopted for the high-performance capture of okadaic acid (OA) marine toxins. Using pore-surface engineering, the integration of linear building blocks (4,4'-diamino-3,3'-biphenyldiol, BD(OH)2 and benzidine, BD) with the 3D structural building block backbone (4,4',4'',4'''-methane-tetrayltetrabenzaldehyde, TFPM) was achieved. By adjusting the ratio of BD(OH)2, functional multicomponent-COFs [OH]x-BD-TFPM COFs (X = 25%) were synthesized, which offered ideal access to convert a conventional COF into a functional platform with multiple-mode interactions of hydrophobic and hydrophilic groups for OA capture. [OH]x-BD-TFPM was characterized using SEM, XRD, FT-IR, and BET. The adsorption features and analytical performance of OA were screened and evaluated. Optimization of dispersive solid-phase extraction using [OH]25-BD-TFPM was accomplished, and the method was verified for sensitive quantitative detection of OA in clam and mussel samples. Coupled with LC-MS/MS, the resultant [OH]25-BD-TFPM COF demonstrated the ability to analyze OA, and the limit of detection for OA in shellfish was determined to be 0.005 µg/kg. A significant improvement in trace OA detection was observed compared to previously reported SPE materials without adjustable hydrophilic interactions. The recoveries of OA in the fortified clam and mussel samples were in the ranges of 93.9‒105.1% and 96.7‒110.2%, respectively. This study highlights that OH-group surface engineering in channel walls is a facile and powerful strategy for developing functional 3D-COFs with multiple interactions for high-performance target capture.


Assuntos
Estruturas Metalorgânicas , Ácido Okadáico , Cromatografia Líquida , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem
20.
Sci Total Environ ; 905: 167010, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722421

RESUMO

As an emerging environmental pollutant, nanoplastics (NPs) have attracted wide attention in terms of their impact on the ecological environment and human health. Currently, researches on the cytotoxicity of NPs mainly focus on oxidative stress, damage to the cell membrane and organelles, induction of immune response and genotoxicity. Okadaic acid (OA) is the main component of diarrheal shellfish toxin. Based on the previous combined toxicity exploration of polystyrene (PS) NPs and (OA) to human gastric adenocarcinoma (AGS) cells, cell-derived exosomes were extracted and exosomal miRNA profiles were analyzed for the first time in this study. The results showed that the composition of miRNAs varied after the exposure of NPs and OA. Specifically, the expression of miR-1-3p in both PS-Exo and PS-OA-Exo was significantly reduced. And the expression of miR-1248 was upregulated most significantly by comparing the DE miRNAs between PS-Exo and PS-OA-Exo. MiR-1-3p and miR-1248 may be the key genes for the combined toxicity of NPs and OA. After analysis, we found that both the decreased expression of miR-1-3p and the increased expression of miR-1248 can increase the expression of FN1 and affect DNA replication, which was surprisingly consistent with the results of our previous cytotoxicity studies. Since exosomal miRNAs are selectively encapsulated by donor cell, we speculate that the changes of exosomal miRNAs may due to the synchronous changes of intracellular environment and the downregulation of intracellular FN1 may be attributed to decreased expression of miR-1-3p and increased expression of miR-1248 in donor cells. Accordingly, we come to the conclusion that the changes of miRNAs in the exosomes derived from AGS cells after environmental stimulation could reflect the biological effects of donor cells.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Microplásticos/toxicidade , Microplásticos/metabolismo , Ácido Okadáico/toxicidade , Regulação para Baixo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...